
Game Designer Behaviour Modelling Interface
Dr John R Rankin and Guy A Suermondt
Computer Science, La Trobe University

{gasuermo,johnr}@cs.latrobe.edu.au

ABSTRACT

A new Behaviour Model for modelling NPCs
has been developed, which is ethologically
based and generates context sensitive
behaviour. The model has been successfully
used to simulate realistic NPCs with essential
complex game behaviours such as cooperative
and herding behaviours. However setting up
creature models requires the user to design top-
level factories and some parts of them are
customised by XML input files and the rest is
hard coded. To avoid a game designer having
to have a deep knowledge of the model, an
interfacing program has been designed that
will generate the XML files in the required
format. This paper outlines the design of this
interfacing software. As a result it is now easy
for game designers to create and test NPC
behaviour models outside of the game.

1- INTRODUCTION

It is an important issue in games today to have
more believable and complex behaviours in
game NPCs [3]. This requires good behaviour
modelling software with the properties of fast
decision making and capable of handling
realistic complex behaviour without using a
large amount of memory. Such a model has
been recently developed by the author [5].

The model adapts two complementary models
those of Blumberg and Tu and is based on
ethological concepts, which partly strengthen
the influence of context on the action decision
algorithm.

On one hand, Blumberg’s model [1] is
grounded in a rich ethological abstraction layer
essentially composed of Internal Variables and
Releasing Mechanisms and Group Behaviours,
which are sets of Behaviours. Inner Variables,
which represent a character’s internal stimuli
can either be triggered by external events or

behaviour values. Releasing mechanisms
analyse external events and return values
correlated to the behaviour relevance for being
expressed. Between Inner Variables and
Releasing Mechanisms, there are Behaviours
bringing together Releasing Mechanisms and
Inner Variables. Behaviours compete and the
character’s next action is derived from the
winning Consummatory Behaviour [1].

This strong abstraction layer is the
fundamental strength of Blumberg’s model.
Thus, it may facilitate the game designer
implementation of NPCs by providing game
designers with elementary blocks in order for
them to build their NPCs. However the relation
between Behaviours and Inner Variables is not
flexible and simple enough for NPC
modelling: different notions of internal stimuli
cannot be modelled and changing the weight of
a specific behaviour may require the designer
to change its inhibitory power as well as its
influence on the related Inner Variables [1].

On the other hand, Tu’s model [4] stresses the
mutual influence of action and perception,
conveyed by the notion of Desire. A Desire,
which is the normalised expression of an Inner
Variable, directly influences the character’s
direction choice. In doing so the character
perceives objects that are implicitly correlated
to its Desires. At the same time, Inner Variable
values are updated in regard to the new
external situation.

Here the choice of the behaviour is done
through a tree structure where nodes are
behaviours and branches conditions leading to
these behaviours [4].

The relationship between the character’s
Desire and the character’s choices is the key
point of Tu’s model for game character
modelling. Its disadvantage is the static tree
structure that does not allow a designer to
easily change the hierarchy among the
character’s Behaviours.

The new Behaviour Model merges the strong
conceptual abstraction layer of Blumberg’s
model with the action-perception mutual
interaction concept from Tu’s model. Thus
Releasing Mechanisms of this model return a

value that is a trade off between the relevance
of the related Behaviour object for being
expressed and the attractiveness of the external
scene in regard to a character’s Desires. In
addition, the new model introduces a new way
of modelling Inner Variables. An Inner
Variable is a combination of Goals and
Motivations. A Goal is an internal stimulus
triggered by an Essential Variable, which is a
character homeostatic variable. Thus a Goal
can be considered as reflecting the influence of
a long-term objective. Motivation is an internal
stimulus triggered by the occurrence of a
specific external or internal event. As a
consequence Motivations can be considered as
the character’s shorts-term objectives. Finally
the last feature is to tie a Strategy object to a
Behaviour object. A Strategy object is a plan to
achieve the implicit Behaviour Desires and is
used by related Releasing Mechanism objects
to assess the relevance of the Behaviour for
being expressed [5].

The new Behaviour Model still requires a deep
technical knowledge in order to create specific
NPC behaviours in regard to the game world.
To create new specific behaviours, designers
can either customise the input XML files or
add extra behavioural factories in charge of
building new Inner Variable, Goal, Motivation,
Releasing Mechanism, Strategy or Behaviour
objects [5]. In order to facilitate the XML file
customisation an interface program can be
created. A designed solution of such an
interfacing application is presented in this
paper.

The following section presents a typical
situation of a NPC that a designer needs to
implement.

2- BEHAVIOURAL
MODEL FOR DAVID

David is a NPC required in an interplanetary
travel game [5]. He is programmed to help the
player who travels from planet to planet
solving problems and yet he has fallibilities as
well. For example his attention may become
distracted and he may become intoxicated
under certain contexts.

A simple behavioural model for the NPC
David is presented below. (See Figure 1.)

David’s Model is built in two steps: first his
internal mechanism is built and then his
behavioural responses set is designed.

In order to build David’s internal mechanism,
David’s Goals, Inner Variables and Motivation
Releasing Mechanism need to be designed.

Three main goals drive David’s life: surviving
‘Survive_G’, helping the user ‘HelpUser_G’
and satisfying some bad pleasures ‘Vice_G’.
The purpose of this last personality trait is to
make David more realistic and to make the
game more entertaining. Due to this
personality David may perform some
unexpected actions, which may disturb
player’s plans or just amuse the player.

From these three goals a set of essential
variables, Survive_ES, Vice_ES,
HelpUser_ES, are created as well as a set of
Inner Variables from which are derived
David’s Desires that influence his Releasing
Mechanisms and Behaviours.

Here the essential variables model the game
physics underlying the David’s Goals. For
instance Vice_ES can be an increasing
function that decreases only when David
successfully satisfies one of his vices. Thus the
more resisting David is to his vices the
stronger the goal is which guarantee that David
will sometimes be tempted. Survive_ES can be
an estimator of David’s wealth. Therefore the
less money David has, the more easily it will
become the player’s friend. Finally
HelpUser_ES is an estimator of the player
kindness for David. The more kind the player
is with David the higher the estimator is. Thus
David will not be forced to help the player if
the player behaves badly toward himself.

Connecting Inner Variables with Goals is done
in regard to how David’s goals can affect his
Desires. In these case the link is 1-1.

Finally the last step to build David’s internal
mechanism is to design his Motivational
Releasing Mechanisms.

In this scenario Motivational Releasing
Mechanisms are designed so that first David
helps the player regardless of his estimation of
the player’s kindness and secondly David is
tempted when an unexpected vice situation
occurs.

After creating David’s internal mechanism, his
behavioural response set should also be
created. Here David is expected to behave in
three particular ways. First David should share
his knowledge with the player, then he should
try to become the player friend and finally
David likes drinking and seducing women.

Thus David Strategies, which are pre-planned
to achieve his goal, can be designed,
Str_Drink, Str_SeduceWoman,
Str_GetEmployed, Str_Suggestion, as well as
David’s Releasing Mechanisms, which are the
typical situations where David can express his
Strategies.

Once this step is done behaviours are created
so that David’s Desires and David’s
Behavioural responses are brought together.

In Figure 1, the behavioural branch that wraps
the Stratey Str_Fight is drawn in order to
illustrate a behaviour family containing two
Appetitive Behaviours.

The Behavioural Model structure for David is
listed below.

Goals:
VICE_G: reflecting how strong the character’s
personality trait [2] related to vice is.
SURVIVE_G: reflecting how strong the
character’s personality trait related to its own
survival is.
HELPUSER_G: reflecting how strong the
character’s personality trait related to player’s
survival is.

MRMs:
EXCEPTIONALVICESITUATION: the MRM
triggers when an exception situation occurs
such as the presence of an incredibly beautiful
woman.
USERINDANGER_MRM: the MRM triggers
when the player is in extreme danger.

Inner Variables:
VICE_IV: reflecting how tempted the character
is.
SURVIVE_IV: reflecting how important
survival issues are for the character.
HELPUSER_IV: reflecting how keen the
character is on helping the player.

Strategies:
STR_DRINK: take the drink and then drink it.
STR_SEDUCEWOMAN: discuss, make her laugh
and kiss her.
STR_GETEMPLOYED: offer services, negotiate
salary.
STR_SUGGESTION: say an information to the
player.
STR_FIGHT: fight for the player

Behaviours:
Three Families: Fvice, Fsurvive, FhelpUser

Releasing Mechanisms:
SERVEDRINK_RM: detect a full glass.
ASKDRINK_RM: detect a person that can serve
a drink.
DETECTPOSSIBLETARGET_RM: detect
challenging woman.
POTENTIALBOSS_RM: detect a person that can
hire the character.
POSSIBILITY_RM: deduce meaningful
information from the character’s database.
OPPONENT_RM: detect an opponent to the
player.

3- SOFTWARE
REQUIREMENTS:

From the details of the sample game character
Behaviour Model Structure of the previous
section we can see what typical requirements
the interfacing application needs. The
interfacing application must firstly ask the user
for the new creature’s name and have its
species selected from a drop down list. Then
the application must provide the game designer
with a window containing access to entry
pages for all the entities listed in the structure
above: a page for editing NPC goals, a page for
adjusting Internal Variables, and pages for
adjusting RMs and MRMs. When the game
designer selects the desired species then the
defaults for the corresponding behavior factory
are loaded into the text boxes on the data entry
pages. These defaults show the creature’s
Goals and the game designer is then able to
make changes to the Goal impulse function
such as the choice of function and function
parameters. These species defaults also show
the consummatory behaviours and the RMs
connected to them. The game designer is then
able to make changes to the RM internal
structures such as the choice of function and
constants in the RM triggering equations.
Likewise the defaults show the Inner Variables
and the MRMs connected to them. The game
designer is then able to make changes to the
MRM internal structures such as the choice of
function and constants in the MRM triggering
equations. Similary, the game designer can for
each sensor on the creature modify the
detection probability curves by choice of
function and constants in the equation. Once
these choices have been made the user
terminates the interfacing program, which will
cause the program to save the behaviour model
details to appropriate XML files.

Having made these adjustments the game
designer can create a number of creatures of
the same species with a wide variety of
performance differences in behaviour.
However the choices of parameters and
functions made do not give the game designer
any clear idea of how the new creature will
perform in the various situations it will face in
the game. Because of this we provide another
stand alone application that will show creature
behaviours outside of the game software. The
model tester application inputs the behaviour
model details for a specific creature from its
XML files and then displays the creature in an
empty window. The user can then set a terrain
type (the window is a single game background
cell) and add other creatures of any species to
see what behavioural responses the creature
makes. The additional creatures are static and
no modelling of their behaviours is made. The
model tester application therefore provides
minimal testing of the possible responses and
behavours of the new creature before that
creature is incorporated into a large game
software.

4- CONCLUSION

Requirements for a Behaviour Model interface
application have been established which
clearly show the feasibility of the design and
therefore we are able to provide such an
interface to game designers that will enable
them to enter the necessary data for
constructing the behaviour model for all
creatures in the game without the game
designer having to understand the internal
workings of the new Behavioural Model.
Game designers however still need to
understand the ethological theory underlying
the design of creatures to achieve optimal
results with the new Behavoural Model. The
interfacing application does not allow the game
designer to change the hard-coded classes of
the Behaviour Model factories. Instead we
provide parameterised factories for Goals, RM,
MRM, IV, and the sensor detection selection
algorithms. Data for these parameterised
objects including choices of functions and the
constants involved in them are read from an
XML data file.

As a result of this research, creatures do not
have to be recreated from scratch:
modifications can be made to default creature
parameters. Complex creature behaviour
modelling is now achievable, and a simulator
for testing behaviour models before they are
incorporated into games has been described.

In future work we hope to extend the software
to increase the complexity of game creatures
by further additions to the interfacing software.
One way is to allow game designers to create
generic behaviour based on richer physics
(more functions and parameters to choose
from) and adjustable parameters inside the
behaviour algorithm. Another way is to
increase the amount of environmental factors
influencing creature behaviour. We also intend
to extend the model testing application to
allow multiple dynamic creatures for testing
creature herding and cooperation.

5- REFERENCE
SECTION

[1]. Blumberg.BM (1997), Old Tricks New
Dogs: Ethology and Interactive Creatures,
PhD dissertation, Massachusetts of
Technology USA.

[2]. Icek Ajzen (1988), Attitude, Personality
and Behavior, Open University Press,
Milton Keynes, UK, pp. 1-8, pp. 21-24, pp
63-64, pp 89-93, pp. 109-113, pp. 143-150

[3]. Morris.D &Rollings.A (2000), Game
Architecture and Design, The Coriolis
group, Arizona, US

[4]. Tu.X (1999), Artificial Animal for
Computer Animation: Biomechanics,
Locomotion, Perception, and Behavior,
Springer-Verlag, Berlin, Heidelberg, New-
York.

[5]. Suermondt.GA, Ethologically Oriented
Context-Dependent Behaviour For Non
Player Characters, thesis submitted for
MSc degree, La Trobe University,
December 2003.

Figure 1. David's Model

