Creating Interactive Characters with BDI Agents

Emma Norling
Department of Computer Science
and Software Engineering
The University of Melbourne, 3010
Australia

norling@acm.org

ABSTRACT

This paper discusses the use of BDI agents for the develop-
ment of human-like synthetic characters. The folk psycho-
logical roots of the paradigm map closely to the way people
typically explain both their behaviour and that of others,
and this greatly facilitates knowledge elicitation and repre-
sentation. This is illustrated through some examples from a
project in which models of expert players of Quake 2 were
developed. The knowledge elicitation methodology that was
used is explained, and samples of the code are presented,
demonstrating the way in which a BDI-based agent pro-
gramming language can clearly and succinctly capture indi-
vidual differences. The example presented is of modelling
expert players in an existing game, but the paper argues
that the same techniques can be used to build a completely
original character, using a role-player as the basis. Finally,
some of the limitations of the BDI paradigm are examined,
with a brief discussion of how they can be addressed, using
the existing framework as a basis.

Keywords
User modelling, synthetic characters, BDI agents

1. INTRODUCTION

The use of BDI agents for modelling human behaviour
has a considerable history, mainly in military simulation [4,
8, 11, 14]. In the entertainment industry, there is one no-
table use of the technology — BlackéWhite [10] — to create
synthetic characters. This paper argues that the BDI agent
paradigm, although originally developed for other purposes,
is particularly suited to the creation of synthetic characters,
particularly those with human characteristics. The actions
of characters built using this paradigm arise from the in-
stantiation of partially specified plans, selected to fulfil the
character’s goals given the beliefs that it has at that point
in time. The details of the plan are filled in as the plan
progresses, which allows the character designer to generate
a wide range of possible courses of action without having to
fully specify the details in each path. It also encodes this
information in a way that maps closely to the way people
describe their reasoning, making it relatively easy to capture
the knowledge of non-programming experts, such as actors,
role-players or players of the game. While the complexity of
the paradigm would (at this stage) limit the number of such
agents that could be supported in a single game, it offers
considerable opportunities for the modelling of key charac-
ters in the game (as in Black& White), or, in combination

Liz Sonenberg
Department of Information Systems
The University of Melbourne, 3010

Australia

l.sonenberg@unimelb.edu.au

with level-of-detail shifting techniques, to add colour and
depth to minor characters during key interactions.

The BDI agent paradigm was originally developed to a-
chieve a balance between reactive and deliberative behaviour
[2], rather than for human modelling. However the folk psy-
chological primitives used in the paradigm — beliefs, desires
(or goals) and intentions — not only achieve the balance be-
tween reactiveness and deliberation that was the original
raison d’étre of the paradigm, but also correspond to the
way people typically explain both their own reasoning pro-
cess, and that of others. For this reason, the paradigm is
well-suited to developing characters which are expected to
display a similar level of intelligence to people, and use a
similar underlying reasoning process.

We illustrate our case in this paper using examples from
a project that involved building models of expert Quake 2
players as ‘bots’ that could play the deathmatch version of
the game against other players. Although in this case the
models were of experienced players in an existing game, the
techniques used could also be applied to role-players envi-
sioning a character in a game under development. The close
mapping between the concepts that the experts used to ex-
plain their reasoning/behaviour and the constructs within
the BDI paradigm greatly facilitated the knowledge elicita-
tion and model building process. Moreover, the just-in-time
planning used by BDI agents (explained in Sect. 2) allows
a wide range of complex behaviours without having to fully
specify every possible course of action. Some illustrations of
the knowledge capture and representation process are pre-
sented in Sect. 4, using the JACK Intelligent Agents pro-
gramming language [5], which is explained where necessary.

While the folk psychological roots of the paradigm do lend
it to building human-like characters, they also provide a level
of abstraction in the reasoning that is not always advanta-
geous. There are many characteristics of human-like be-
haviour that are not explicitly captured in the paradigm,
characteristics which sometimes should have considerable
impact on behaviour. Fortunately, although the paradigm
does not explicitly represent such characteristics, it is highly
amenable to the types of extensions needed to address these
issues.

In the next section, we explain the underlying concepts
of the BDI paradigm. This is followed in Sect. 3 by a de-
scription of the knowledge elicitation process that was used
to gather the plans and knowledge used by three expert
Quake2 players, the subjects of the experiments. Section 4
then discusses how this knowledge was encoded using JACK,
demonstrating the way this process is facilitated by the BDI

paradigm, but also highlight some of the ways in which
JACK diverges from a “pure” BDI language. In Sect. 5 we
then look at some of the shortcomings of a BDI approach to
human modelling, and briefly outline how the BDI paradigm
can be extended to address these issues.

2. THE UNDERLYING PHILOSOPHY

The BDI framework is based upon a folk-psychological
view of reasoning, that is, the way people think that they
think, as opposed to the actual mechanics of the way that
the brain works. While folk psychology suffers criticism be-
cause of the necessity for introspection (as opposed to an ob-
jective understanding), it does provide a robust mechanism
for reasoning about human reasoning. Bratman’s Intention,
Plans and Practical Reason [1] best summarises the philos-
ophy of the BDI framework (and indeed has been the basis
for much work in this field), but an abbreviated summary is
given here.

Briefly, an agent is characterised by its beliefs, goals (de-
sires), and intentions — it will intend to do what it believes
will achieve its goals given its beliefs about the world. As
well as these three components, a BDI agent is usually as-
sumed to have a plan library — a set of “plans as recipes”
that it can use to achieve particular goals given particular
preconditions. An intention is formed when the agent com-
mits to a particular plan — a particular sequence of steps
to perform — from this set in order to achieve a goal. The
steps themselves may be atomic actions, or they may be
subgoals, which can be satisfied by other plans. Because
the agent does not need to commit to a particular plan for
these subgoals until the last possible moment, this allows a
balance between reactive and deliberative planning.

Tying together the beliefs, goals, plan library and inten-
tions is the reasoning engine, as shown in Fig. 1. This rea-
soner is what drives the agent, updating beliefs, monitoring
and updating goals and intentions, selecting plans to achieve
goals, and based on the current intentions, selecting the ac-
tions to perform.

Sensors Actions

\Y4
/N

Reasoner

ENVIRONMENT

Figure 1: The key components of a BDI agent

A key feature of the plan library is that although the plans
are fixed “recipes” for action, they do not have to be fully
specified. For any particular goal, there may be multiple
plans to achieve that goal, and while any plan may be fully
specified as a sequence of actions, a plan may instead consist
of a sequence of subgoals, or a combination of actions and

subgoals. In the case that the plan contains subgoals, the
agent can delay the choice of how to achieve a particular
subgoal until the time that it reaches that stage of the plan.
While this does not achieve the full range of adaptability
that people display, it does allow considerable flexibility in
the agent’s planning, and its resulting behaviour.

In theory, to build a BDI agent, one should be able to
specify the things an agent can have beliefs about, the goals
that it may wish to achieve, and a set of plans for achiev-
ing those goals. Once these three sets have been specified,
the agent should be able to operate within its environment,
driven by the reasoning engine. Of these three sets, it is
in specifying the plans that the bulk of the work lies, but
choosing appropriate representations for beliefs and goals
is critical. The reasoning in the plans revolves around the
agent’s beliefs about the world, and so having those beliefs
expressed in a suitable form is essential to the development
of these plans. Each plan must specify the conditions in
which it is applicable, the goal that it aims to achieve, and
the steps that need to be performed for success. These steps
may be atomic actions that the agent will perform, or they
may be subgoals that the agent will attempt to find a plan
for when needed.

It is precisely because this philosophy has its foundations
in folk psychology that it proves to be useful in capturing
human knowledge. When asked about how they think about
a problem, people already have a tendency to explain their
actions in terms of what their intentions were, which in turn
are explained in terms of their goals and beliefs. Moreover,
when they describe the ways in which they try to achieve
goals (that is, the plans that they use), they will do this in a
hierarchical manner, which maps to the partial plans needed
for the plan library. Extracting this information from peo-
ple does require careful planning and structured question-
ing, but the fact that model builder and the subject being
modelled are referring to the same concepts does simplify
matters.

3. KNOWLEDGE ELICITATION FOR BDI
AGENTS

One of the challenges when building synthetic characters
is the task of gathering the knowledge that the characters
will need to operate in their world. The complexity of a syn-
thetic character depends on two main factors: the degree of
complexity of the environment in which the character is sit-
uated (and the degree to which it must interact and respond
to that environment), and the complexity of the interactions
in which it will be involved, particularly those that involve
real people (rather than other synthetic characters, which
tend to be more predictable than people). Modern computer
games and interactive story-telling environments, like mili-
tary simulation environments, include characters that tend
to the higher end of both of these measures, and it is in this
area that the BDI paradigm would be used. Such characters
will usually be able to perform a wide range of actions, and
combine them in numerous ways to produce an even wider
range of behaviours. The challenge is to ensure that the
character has a response for whatever situation arises, and
moreover that the response in each situation is such that
the character behaves in a “sensible” (for that character)
manner.

In this project, a form of knowledge elicitation known as

Table 1: Sample First Interview Probes

Table 2: Sample Probes from Later Stages

When you play the game, do you perceive any distinct phases?

What are you main goals in each of these phases?

What are the relative priorities of these main goals?

Say you enter a new game, where you don’t know the world map,
and you may know some, but not all, of the players. What are
the first things that you do?

Do you make an effort to get to know the style of the other play-
ers? How do you use that knowledge?

Applied Cognitive Task Analysis (ACTA) was adapted for
this purpose. ACTA was originally developed as a means
of gathering task knowledge for the development of training
programs and for task redesign [9]. It particularly focuses
on the cognitive aspects of the task — the reasoning about
the courses of action to take, particularly in non-standard
cases — rather than trying to define the task in terms of the
procedures that must be followed. The methodology consists
of a series of semi-structured interviews, during which the
subjects are probed about their task, with emphasis on how
they use their expertise. The data from these interviews is
then used to develop a picture of the whys behind the task,
in order to develop new procedures and/or interfaces for the
task, or to develop training to bring novices quickly up to
speed. For the project described here, the same type of
semi-structured interviews were used, but the subjects were
expert players of Quake 2, and the data was used to build
models of these players.

Three different players were involved, each with a quite
different playing style, leading to three different models. In
this paper, we focus on two of the players in particular:
the first was a sniper type player, who would find places
to hide and wait for victims to come in to range, and the
second was a more aggressive player, who would run around
actively searching for victims. In terms of playing skill, the
sniper was perhaps slightly the better, but their different
styles did not lead to significant differences in their scores.

Each player was interviewed independently, through a se-
ries of interviews. The interviewer was mot an expert at
the game, which was an advantage, as it meant that the in-
terviewer did not bring preconceived notions about how to
play. The first interview was a “big picture” analysis, con-
sisting of questions such as those in Tab. 1. — did the player
perceive the game in terms of different stages; what were the
main goals in each stage; what were the relative priorities
of the main goals; and so on. The data from this stage was
then analysed and used to drive the questions in the sub-
sequent interview. This second interview then probed more
deeply about various aspects of the game. In the first inter-
view, the focus was on the player’s goals; the focus in the
second interview is more about the way the player perceives
the world, and probing about special cases. Some examples
of the questions that were posed in this stage of the inter-
views are given in Tab. 2. For two out of the three players a
third interview was also necessary. The data from the stage
two interview was examined, and there were still gaps in
the knowledge. ACTA does not prescribe a fixed number of
interviews; they continue until the knowledge gathered ap-
pears to be complete. This requires careful analysis of the
data at each stage: were there any cases not covered? and
were all the terms used fully explained?

You say the first stage of the game is when you don’t know the
map. When do you consider that you do know the map? Do you
explore every nook and cranny?

What makes a good sniping spot?

If you’d just respawned and you could hear but not see a fight
nearby, what would you do?

How important are the sounds in the game to you? What sorts
of things do you listen for?

What sort of things most clearly differentiate novice players from
expert players?

Say you’d identified a particular opponent as being a better player
than you. Would you make an attempt to actively avoid him/her?

The subjects in this case were all experienced players of
the game, and so the interview questions were designed to
extract their expertise. Nevertheless, hypothetical situa-
tions were presented in many of the questions, probing to
see how the individual would react. An optional stage in the
ACTA process is a simulation interview, where an extended
scenario is presented to the subject and they are asked to
explain what they would do. This stage was not undertaken
with any of the subjects, in part because the nature of the
game makes it difficult to present such an extended scenario.
Another optional stage is to observe the subjects performing
their task and then probe them about particular instances
that arose. In this project, the subjects participated in an
hour-long eight-player game after the final interviews, how-
ever no additional questions arose from this exercise.

If the subject was a role-player for a character under de-
velopment, rather than a player of an existing game, the
emphasis of the questions would have to shift but the over-
all approach would remain the same. There would be a
greater tendency towards hypothetical scenarios, and the
interviewer would have to be clear in their mind what was
needed to achieve coverage. A key outcome of the inter-
views with the Quake 2 players was that the different play-
ers perceived the world in considerably different ways. For
example, while all players might refer to “low health,” the
actual numbers that they gave for it varied significantly.
This meant that although the resulting belief structures con-
tained a field that was labelled the same way, the meaning
varied from one model to another. In other cases there were
things in the world that held significance for one player but
not another, and so there were fields in the belief structure
of one model with nothing corresponding in another model.
The consequence of this for the role-playing case is that the
beliefs of the character are largely determined by the role,
and capturing the correct “view” of the world will largely
influence whether or not the character maintains the sus-
pension of disbelief in the game.

3.1 The Game of Quake 2

Before looking at some examples of how the models of
the players were implemented, we first briefly discuss the
game of Quake 2 and previous attempts to create automated
players, or bots, for the game. It is a well-known first-person
shooter game from ID Software which can be played in a
number of different modes, both single- and multi-player.
For the purposes of this work, it has been the deathmatch
version that has been used, which is a multi-player game,

Quake 7

0 gﬁin@j”
~hattle

Figure 2: A sample of the detail in Quake 2

the aim of which is simply to get the highest number of
kills. The number of players starts at two, and is limited
only by the size of the map, but is most commonly in the
range of four to ten players in any given game — although
this number may include bots as well as human players.

The world of this game is specified by a three-dimensional
map, through which the human players navigate with a
graphical first person view, using mouse and keyboard in-
puts. The map can vary enormously from one game to an-
other, from narrow hallways to wide open spaces, and can
include hazards, secret hiding spots, bright lights, dark cor-
ners, etc. Scattered throughout the map are various items —
weapons, armour, health, and others — each of which is peri-
odically regenerated in the same place in the map, and each
of which has its own particular set of characteristics. For
example, a shotgun has very different range, firing speed,
ammunition, etc to a rocket launcher. Players respawn at
a number of fixed positions in this map, reappearing at a
random one of these each time they die. Each time they
are respawned, they have only the most basic weapon, full
health, and no other items.

A sample of a player’s view is given in Fig. 2. It illustrates
some of the detail in the game, although it is somewhat
limited by the greyscale format. An expert player would get
far more information from this view than is indicated here —
such as what type of weapons the other players were using,
as well as noticing when they ran out of ammunition. There
is also implicit knowledge in the picture: for example, at
the position marked * there would usually be a certain gun.
The player may know, or at least suspect, that the player
who is now on the lower level has just picked this up.

Within this world, the players must equip themselves, seek
out other players, and kill them, all while avoiding being

killed. (Being killed does not directly affect your score, but
puts you at a distinct disadvantage due to lack of equip-
ment.) There are a wide range of strategies used by different
players, with none appearing to be significantly better than
any of the others. That is, players with completely different
styles can be very closely matched in terms of score. Some of
the details of how the experts in this study operated are dis-
cussed in Sect. 4, but first, consider the differences between
human players and existing bots.

3.1.1 Existing computer generated characters

There are numerous bots available for download that can
play Quake 2 deathmatch with varying levels of success. The
most simple of these are obviously “stupid,” and experi-
enced players can easily predict their behaviour after watch-
ing them for a short amount of time. There are also some
very sophisticated bots, which are not so easy to predict,
but which nevertheless have obvious flaws in their strate-
gies that experienced human players would not display. As
well as these strategic differences that the bots display, they
also have low-level differences. The bots have access to raw
data about positions, velocities, etc, and this means that
they have a tendency to have much better aim than human
players, who have to deal with hand-eye coordination.

An example of the type of strategic flaw that bots display
is as follows: If two players are involved in a fight, this is an
ideal chance for a third player to attack them both. The first
two players will already have taken some damage from each
other, while the third player is likely to be at full health.
Also, the two fighting players are likely to be focused on
each other, and so the third player will have the advantage
of surprise. In this circumstance, the usual response for both
of the first two players, assuming they are human, is to get

away from the fight as soon as they notice the third player.
However even the best bots do not react to this situation,
continuing to attack their original opponent and ignoring
the third player. This is just one example, of which expert
players can list many, and which the human players use to
their advantage.

4. DESIGN TO IMPLEMENTATION

We now look at some implementations of the strategies of
the two players of interest — the sniper and the aggressive
player — to demonstrate how the BDI paradigm facilitates
the capture of the strategic thinking of the players. The
code fragments that are shown are written using JACK, a
BDI-based agent programming language, and some brief ex-
planations of the technical details are presented. It should
be noted that there are some gaps between the underlying
theory of BDI and its implementation in JACK, and that
like BDI itself, this language was not designed specifically
for human modelling — indeed, it has a wide range of ap-
plications. Nevertheless, as the examples illustrate, it is a
powerful tool for creating human-like synthetic characters.

Naturally the ultimate goal in the game is to get the high-
est score — a goal that any player competing in the game will
hold. The question is, how do they achieve this goal? At
the highest level, both players agreed on the plan to achieve
this goal: explore the map, and attack other players. This
abstract plan is simply written in JACK:

plan Win extends Plan {
#handles event WinGoalEvent ev;
#posts event MapGoalEvent map_goal;
#posts event ScoreGoalEvent score_goal;

body O {
@post (map_goal.explore());
@post (score_goal.attack());

}

4.1 Events Instead of Goals

In this very first plan, one of the discrepancies between
theory and practice becomes apparent: JACK has no ex-
plicit representation of goals. Instead, it has events, which
are similar, but not identical. Every plan must handle one
and exactly one type of event, equivalent to handling one
and only one goal. It may also post events — in this case it
posts two — equivalent to setting new goals. The difference
between goals and events is that events are instantaneous,
and cease to exist after a plan has been chosen to handle
them. (Actually, they remain in some sense, because the
agent can detect plan failure and when this occurs, it can
re-post the goal. However there is no explicit representation
of the goal that the agent can reason about.)

This means that it is not easy to reason about the goal
once a plan has been selected. If, for example, an opportu-
nity arises for a better way of achieving a goal, there is no
obvious way of detecting this. Similarly, it is difficult to de-
tect whether a new goal, or a particular plan for achieving a
goal, will cause conflicts with existing goals. It is possible to
work around these problems, usually by maintaining beliefs
with respect to the current goals, but this needs to be done
explicitly.

4.2 Sensing the Environment

It was when the subgoals of the two players were examined
that the differences began to appear. The goal to explore the
map meant quite different things to the each of the players.
The sniper was looking for places to hide, places where other
players were likely to run by — on their way to a favourite
weapon or to boost their health, for example. The aggressive
player was also looking for places to hide, but for a different
reason. He was looking for places where people were likely
to snipe from, and he was looking both for ways to avoid
getting in range of these spots, and also for ways to ambush
players there. However, the act of observing things in the
environment is not just part of the plan for exploring, but
something that the players do continuously. This meant that
despite the fact the players were noticing different things,
the exploration plan also looked the same for both players:

plan ExploreMap extends Plan {
#handles event MapGoalEvent ev;
#posts event MoveGoalEvent move_goal;
#reads data MapData map;
#reads data SelfData self;

context() {
map.hasGaps() && !self.fighting();

}

body () {
Position next = map.getNextUnknown() ;
@subtask(move_goal.go(next));

}

The @subtask statement that has been used in this plan
is similar to the @post statement that was previously intro-
duced. Like the @post statement, it creates a subgoal, but
whereas the @post subgoal is handled asynchronously, this
subgoal is handled synchronously, and if the subgoal cannot
be achieved, this plan will fail.

The issue of finding or noticing things goes back to an
issue that was glossed over in Sect. 2, and indeed is often
glossed over in the BDI literature: Just how does the agent
sense the environment? Is there a plan which receives in-
formation from the sensors and updates beliefs, or do the
sensors feed directly into the beliefs? In this particular ap-
plication, the agent connects to a Quake 2 server via an in-
terface. This interface receives a continuous stream of data
from the server, which it then decodes and stores as beliefs.
The exact beliefs that are stored depend on the player being
modelled, and in fact are dependent on the information that
the player uses in his plans. Also note that in some cases,
changes to beliefs can result in new goals being generated.
For example, noticing incoming fire may trigger a goal of
“evade attacker.”

4.3 Capturing Strategic Differences

The examples given thus far have not shown any difference
in the behaviour of the two players. However the plans used
to achieve the second goal of the top level plan, to build the
score, did show clear differences:

plan BuildScore extends Plan {
#handles event AttackGoalEvent ev;
#posts event EquipGoalEvent equip_goal;
#posts event HideGoalEvent hide_goal;
#uses data SelfData self;
#uses data MapData map;

context () {
!self.fighting() && !'map.hasGaps()
&& !self.seePlayer();

}

body () {
@subtask(equip_goal.getWeapon());
@subtask(hide_goal.goSnipePos());
@wait_for(self.seePlayer(), TIMEOUT);

}

This plan is the plan used by the sniper — in the case that
he has explored the map, is not already engaged in a fight,
and cannot see another player. Basically, he makes sure
he has a “decent” weapon (which is handled as a subgoal),
then selects a suitable hiding spot, goes there and waits for a
player to appear. If by some chance a player does not appear
within a given period, the plan fails. If such failure occurs,
the agent will re-plan, which in this particular case is likely
to involve this plan again, but a different hiding spot. If the
plan succeeds, the agent will have seen another player, and
this will itself generate another goal, via the server interface
belief discussed above. Contrast this with the plan body of
the more aggressive player in the same context:

body () {
@subtask(equip_goal.getWeapon());
while(!self.seePlayer()) {
Position pos;
if ((pos = self.hearPlayer())
== null) {
pos = map.getLikelySpot();
}
@subtask(move_goal.go(pos) ;

Again, this agent wants to have a “decent” weapon before
hunting out other players. The difference is, once he has
one, he will move from place to place, actively seeking out
players. This puts him at greater risk, since the other agent
is not as visible to other players, but it also means that he
is more likely to encounter other players, particularly in a
sparsely populated map.

4.4 The Case of the Third Combatant

These two plans demonstrate the ease with which the
strategic differences of different players can be captured, but
what about the motivating example, where humans will re-
treat from a fight but bots won’t? This is handled using
a maintenance condition, which means that the agent will
only continue to fight a given player while it is “safe” to do
so:

plan HandlePlayer extends Plan {
#handles event PlayerSeenEvent ev;
#posts event EngageGoalEvent engage_goal;
#posts event EvadeGoalEvent evade_goal;
#uses data SelfData self;

context() {
Iself.fighting();

}
body () {
if (self.shouldAttack(ev.player))
@maintain(self.safeFight(),
engage_goal.attack(ev.player));
@post (evade_goal.hide());
}

The agent checks to see if it should attack the player spec-
ified in the goal (based upon the agent’s own status and
its knowledge of the other player). If it should, it will en-
gage the player, and continue fighting this player while it is
“safe.” Thus far, all discussion about the implementation
has concerned plans, with passing reference to the beliefs
and goals (events) within the plans. To demonstrate how
the maintenance condition works, a fragment of SelfData
is presented:

public view SelfData {
#uses data Health health_bel;
#uses data Fight fight_bel;

#complex query safeFight() {
return health_bel.safe() && ...
&& fight_bel.singleOpponent();
}

boolean fighting() {
return fight_bel.numOpponents() > 0;
}

}

Every time the health bel or fight_bel beliefs change (via
new information arriving from the server), the safeFight ()
conditions are re-evaluated. There were other conditions
in this test than are shown here, but these are omitted for
brevity. safeFight () is a complezr query, whereas fighting()
is simply a boolean function. This is because fighting() is
only ever used as a simple test, rather than as a trigger for
a maintenance condition (or one of the other types of JACK
statements — not illustrated here — that requires a triggering
condition).

4.5 Representing Beliefs

In JACK, there are a number of mechanisms for represent-
ing beliefs. Most simply, they can be instances of any Java
class or basic data type, but there are two special JACK
constructs that give extra functionality: views and belief-
sets. These types of beliefs can be used to trigger new goals
in the agent, a way of achieving reactive behaviour in the
agent. The previous example is a view, which is itself a com-
pound belief, referencing other beliefs including health bel

and fight bel. A beliefset is a simpler construct, contain-
ing only Java constructs. An example of a changing belief
triggering a new goal is illustrated in the Health beliefset:

public beliefset Health extents OpenWorld {
#posts event EvadeEvent evade_goal;
#value field int health;
#indexed query getHealth(logical int $h);

#complex query safe() {
logical int $health;

return getHealth($health)
&% $health.as_int() > MIN_HEALTH;
}

void addfact(Tuple t, BeliefState is) {
Health__Tuple ht = (Health__Tuple)t;
if (ht.health < CRIT_HEALTH)
postEvent (evade_goal.panic());

}

This beliefset has a single field, the value of the health that
is received from the server. When this value is updated
(by adding a fact to the beliefset), the addfact callback is
triggered (a built in feature of JACK), and if the health has
fallen below a critical level, a new goal is posted. The fields
of a beliefset are accessed by logical variables, which is the
reason for the somewhat unusual syntax above. These are a
feature of JACK, and allow prolog-like queries of beliefsets,
which can be a powerful mechanism when writing plans.

4.6 Low Level Skill Differences

In all the code examples above, there are no atomic ac-
tions — that is, steps in the plan where the agent actually
does something in the environment. The steps in the plans
are subgoals, which may themselves be achieved by plans
consisting entirely of subgoals, but eventually they must be
grounded in actions — which in the case of this application
means sending simulated keyboard or mouse events to the
server.

However once we reach this level, the people being mod-
elled do not actually think about these actions. Their rea-
soning is at the level of “I mowve to position A, hugging the
walls,” not the details of which keys they press to achieve
this. In fact this is done as an action-feedback loop, where
the player presses keys (or moves the mouse) based upon the
view they see on their screen. Fortunately studies in HCI
and user interface design provide objective data on this type
of behaviour, including the time taken for mouse movement
and key presses, as well as the errors that arise [3], and
previous work has already demonstrated how this can be
incorporated into a model built in JACK [13]. Thus the
low level actions can be implemented independently of the
strategic information supplied by the expert players.

This also has an important side effect: due to the fact that
this data already includes models of error in movement, and
the time taken for actions, the errors that human players
make (in terms of aiming and movement) are automatically
incorporated into the model.

5. LIMITATIONS AND ONGOING WORK

As discussed in Sect. 2, the BDI paradigm is useful in
capturing human knowledge because of its folk psychological
foundations. The folk psychological model of reasoning is
a way of dealing with the complexity of human reasoning.
It is powerful because it gives a robust model of human
reasoning without having to explain the mechanics of how
the brain works. However there are circumstances where the
paradigm is overly complex for what is required, and other
circumstances where the level of abstraction is too high, and
a more detailed model is appropriate.

The power of a BDI solution lies in the ability to abstract a
complex environment in which complex strategies are used.
It is when the people being modelled describe their reasoning
in folk psychological terms that BDI is useful. When the
people can describe their reasoning in less complex form,
a solution that matches that form will almost certainly be
less computationally complex than a BDI-based solution,
and probably more easily implemented. However the range
of environments in which people describe their reasoning in
folk psychological terms is extensive, and the BDI framework
is a powerful tool for building models of these people in these
environments.

There are cases though when the level of abstraction pro-
vided by the BDI paradigm is too high. These fall into two
broad sub-categories: those where low level subconscious
behaviours have a strong influence on the overall behaviour
of the character, and the second is where there are addi-
tional high-level conscious processes (for example memory,
emotion or learning) that have a significant influence. For-
tunately the BDI framework can be extended to support
characteristics that fall into either of these categories.

The first case, of subconscious behaviours, can be imple-
mented as “plug ins” to the framework. These behaviours
are not directly part of the reasoning process, but influence it
because the character must adjust for the timing and errors
that occur in the behaviours. The low level skills described
in Sect. 4.6 are one such example of this — the players did not
think about the way the used they keyboard and mouse, yet
the timing and errors meant that the agents had to adjust
their actions and reasoning to take these into account.

In the second case, where the processes of interest are high
level conscious processes, the framework must be adjusted
to incorporate models of these processes within it. Fortu-
nately the folk psychological roots are again a benefit here.
For any such conscious process, there is a folk psychological
explanation for it — that is the nature of folk psychology —
and such an explanation will generally use similar concepts
(and possibly some additional ones) to those used in the
BDI paradigm. This facilitates the development of a new
framework, based on BDI, that incorporates the character-
istic of interest. One example of this is presented by Norling
[12], where the decision making model used by the agents is
modified, to use recognition-primed decision making (RPD)
[6]. Gratch and colleagues have made a similar type of ex-
tension to the Soar architecture, this time addressing the
issue of emotion [7]. !

"While Soar is not a BDI architecture in the strict sense,
conceptually it is often treated in this way. The model of
emotion used by Gratch et al. does use concepts that relate
closely to those already used in BDI-based languages.

6. CONCLUSIONS

The BDI paradigm is a powerful tool for building models
of human operators performing complex tasks in complex
environments. The underlying philosophy of the paradigm
maps easily to the way in which people tend to explain their
behaviour in these situations, and as such it provides a basis
for the design of these agents. In moving from this design to
implementation, there will inevitably be some compromises
due to the gap between theory and practice, but experience
has shown that the effort required for this compromise is
more than compensated by the ease of design. The example
presented in this paper has illustrated the ease with which
high level strategy can be captured in the agents’ plans, and
also highlighted some of the gaps encountered, showing how
they were dealt with.

Gathering and representing the knowledge needed to build
a synthetic character is always a challenge, but the modi-
fied ACTA methodology described in Sect. 3 has been highly
successful. ACTA has been developed to understand the rea-
soning behind the performance of tasks, in much the same
way that the BDI paradigm captures the reasoning that
leads to action. The interview process allows the builder
to determine the appropriate representation for the beliefs,
goals and plans of the character under development. This
appropriate representation greatly facilitates maintaining the
integrity of the character’s role, and subsequently the of sus-
pension of disbelief that is so important in synthetic envi-
ronments.

Some examples have been presented of the capture of high
level strategies of Quake 2 players using the JACK agent lan-
guage. These illustrate that while the language was not de-
signed specifically for human modelling, the BDI basis of the
language does allow these strategies to be relatively clearly
and succinctly expressed. Some adaptations had to be made
to account for gaps between the theory and practical imple-
mentation of the paradigm, but these were relatively easy
to achieve. Computational resources would of course limit
the number of characters of this complexity that could be
supported in a game, but with appropriate tailoring of the
system, at least key characters could be implemented using
the BDI paradigm, as in Blacké White, and using level of
detail switching techniques, it may be possible to support a
larger number of characters in this way.

Finally, while the BDI paradigm is not the solution for all
synthetic characters, it is extremely powerful for those that
must exhibit a wide range of complex behaviours, partic-
ularly when they must interact with (often unpredictable)
players. In some cases it does not capture the all the aspects
of human behaviour that are of interest, but even in these
cases, it provides a basis for an extended framework. Sub-
conscious behaviours can be attached to the existing frame-
work, so that they affect behaviour directly but reasoning
indirectly, and conscious processes can be integrated into
the framework, using folk psychological concepts compati-
ble with those already used.

7. REFERENCES

[1] Michael E. Bratman. Intention, Plans and Practical
Reason. Harvard University Press, Cambridge,
Massachusets, 1987.

[2] Michael E. Bratman, David J. Israel, and Martha E.
Pollack. Plans and resource-bounded practical

[6]

(14]

reasoning. Computational Intelligence, 4(4):349-355,
1988.

Stuart K. Card, Thomas P. Moran, and Allen Newell.
The Psychology of Human-Computer Interaction.
Lawrence Erlbaum Associates, 1983.

Clint Heinze, Bradley Smith, and Martin Cross.
Thinking quickly: Agents for modeling air warfare. In
Proceedings of the Eighth Australian Joint Conference
on Artificical Intelligence, Brisbane, Australia, 1998.
Nick Howden, Ralph Rénnquist, Andrew Hodgson,
and Andrew Lucas. JACK intelligent agents —
summary of an agent infrastructure. In Proceedings of
the Second International Workshop on Infrastructure
for Agents, MAS, and Scalable MAS, Montreal,
Canada, May 2001.

Gary A. Klein. A recognition-primed decision (RPD)
model of rapid decision making. In Gary A. Klein,
Judith Orasanu, Roberta Calderwood, and

Caroline E. Zsambok, editors, Decision Making in
Action: Models and Methods, pages 138-147. Ablex
Publishing Corporation, 1993.

Stacy Marsella and Jonathon Gratch. Modelling
coping behavior in virtual humans: Don’t worry, be
happy. In Proceedings of the Second International
Joint Conference on Autonomous Agents and
Multiagent Systems, pages 313-320, Melbourne,
Australia, July 2003. ACM Press.

David Mcllroy and Clinton Heinze. Air combat tactics
implementation in the Smart Whole AiR Mission
Model (SWARMM). In Proceedings of the First
International SimTecT Conference, Melbourne,
Australia, 1996.

Laura G. Militello and Rob J. B. Hutton. Applied
Cognitive Task Analysis (ACTA): A practitioner’s
toolkit for understanding cognitive task demands.
FErgonomics, 41:1618-1641, 1998.

Peter Molyneux. Postmortem: Lionhead Studios’
Black & White. Game Developer, June 2001.

Graham Murray, Serena Steuart, Dino Appla, David
Mecllroy, Clinton Heinze, Martin Cross, Arvind
Chandran, Richard Raszka, Gil Tidhar, Anand Rao,
Andrew Pegler, David Morley, and Paolo Busetta. The
challenge of whole air mission modelling. In
Proceedings of the Australian Joint Conference on
Artificial Intelligence, Melbourne, Australia, 1995.
Emma Norling. Learning to notice: Adaptive models
of human operators. In Second International
Workshop on Learning Agents, Montreal, Canada,
May 2001. ACM.

Emma Norling and Frank E. Ritter. Embodying the
JACK agent architecture. In Markus Stumptner, Dan
Corbett, and Mike Brooks, editors, AI 2001: Advances
in Artificial Intelligence, volume 2256 of Springer
Lecture Notes in Artificial Intelligence, pages 368-377.
Springer, 2001.

Adrian Pearce, Clinton Heinze, and Simon Goss.
Enabling perception for plan recognition in
multi-agent air-mission simulations. In Proceedings of
the Fourth International Conference on MultiAgent
Systems (ICMAS2000), pages 427-8, Boston, July
2000. IEEE Computer Society.

